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We have studied the relaxation of the n-spin correlation function (e("~) and distribution 
function P,(cr(-); t) for the Glauber model of the one-dimensional Ising lattice. We 
find that new combinations of correlation functions (C-functions) and distribution 
functions (Q-functions) are more useful in discussing the relaxation of this system 
from initial nonequilibrium states than the usual cumulants and Ursell functions 
used in our papers I and II. The asymptotic behavior of the P, C, and Q func- 
tions are: p~(~l~); t) -- P~~ ~ Pl(a;  t) -- p~0)(~); C~(a(,~; t) -- C~(~ ('~)) :-. (~)'~; 
Q,,(~(n); t) - Q}O)(~)) ~ [P~(a; t) - P~(~ where the superscript zero denotes 
the equilibrium function. These results imply that P~(o('~);t), n > 2, decays to a 
functional of lower-order distribution functions as [Pa(*; t) - p~0)(e)]~ and that the 
n-spin correlation function (cr with n > 2 decays to a functional of lower-order 
correlation functions as (~)~. This result for the distribution function P~(o('~ ; t), n > 2, 
is identical with the results obtained in papers I and II for initially correlated, non-  
interacting many-particle systems in contact with a heat bath and for an infinite chain 
of coupled harmonic oscillators. As a special example, we study the relaxation of the 
spin system when the heat-bath temperature is changed suddenly from an initial 
temperature To to a final temperature 2". We obtain the interesting result that the spin 
system is not canonically invariant, i.e., it can not be characterized by a time-dependent 
"spin temperature." 

KEY W O R D S :  Ising lattice; spin correlations; spin distribution function; dynamics of 
correlations; master equation. 
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t .  I N T R O D U C T I O N  

In this paper, we continue our discussion of the decay of correlations in systems 
relaxing from initial nonequilibrium states to their final equilibrium states. In two 
previous papers (~,2) (hereafter referred to as I and II, respectively), we developed the 
theory for noninteracting, initially correlated many-particle systems and for an infinite 
chain of coupled harmonic oscillators. We found that the initial correlations as 
measured by the Ursell function U,~ decayed to their zero equilibrium value faster than 
the distribution functions relaxed to their equilibrium values. In particular, the 
n-particle distribution functions relaxed to their equilibrium forms p~o) asymptotically 
as 

P n ( t )  - -  P(n ~ " ~  Pl( t )  - -  P1 ~ n >/ 1 ( I )  

and the Ursell functions relaxed asymptotically as 

u . ( t )  .-~ [Pl( t )  - p~~ (2) 

Equation (2) implies the important result that P,(t), n >/ 1, relaxes to a functional of 
lower-order distribution functions [P,_a(t), P,-~( t )  ..... Pl(t)] as [Pl(t) -- p~0)],. 

In this paper, we discuss the relaxation of the n-spin correlations and distribution 
function of the infinite one-dimensional Ising system with nearest-neighbor inter- 
actions using the stochastic dynamical model of Glauber. (~) For this system, the 
n-spin equilibrium distribution function factorizes into a product of two-spin distribu- 
tion functions rather than into a product of singlet distribution functions. Further- 
more, the dynamical variables of the Ising model, the spins crl, can assume only the 
values ~ 1, so that a~ 2 = 1 for all i. Thus, for example, (cri 2) = 1 for all i and all times 
t. We shall see that these properties make it desirable to construct new functions, 
analogous to the cumulant and UrseU functions used in I and II, in order to discuss 
the relaxation of the n-spin correlation and distribution functions. 

An important result of this paper is that the n-spin distribution function 
P~(a'~; t), n > 2, decays to a functional of lower-order distribution functions 
[P~-I, P~-2 ..... P~] as [P~(cr; t) -- P~~ and that the n-spin correlation function 
<o(~>, n > 2, decays to a functional of lower-order correlation functions [<~{~-~)>, 
<o{"-~)>,..., <e>] as <or> ". This result is identical with our findings for the systems 
considered in I and II. Some previous work {4) on spin relaxation in the one- 
dimensional Ising model which employed the usual cumulant and Ursetl functions 
has led to some incorrect results. Application of the usual cumulants to the two- 
dimensional Ising model (5) probably does not lead to valid results either. 

We consider an infinite, one-dimensional lattice with a spin ~{ = :j:l on each 
site i. The state of the system is specified by the spin vector {~r} = ( .... ei_~, e{, e{+~ .... ). 
The probability of finding the system in the state {~} at time t is P({~}; t). The n-spin 
The n-spin reduced probability P~(~(~); t) is given by 

P,~(cr("); t) ~ P,,(~r,x, cr,~ ..... er ; t )  = ~ P@r}; t) (3) 
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where the summation is over all spin variables except a~ through (r~. The time- 
dependent spin correlation functions are defined as 

+',1% " "  = ' t) = Z % %  " t) 
{~) (~(~) 

(4) 

where the time dependence of ( ( Y i l ( Y i 2  " '"  (7i,) is implicit. The reduced probabilities can 
be expressed in terms of the correlation functions as (3) 

Pn(crit .... , ai,~ ; t) 

j=l  j<~ 

(5) 

Transitions of the spins between their possible values •  are due to their inter- 
actions with an external heat reservoir. The transition rate for the flip of  the ith spin 
from the value or/to the value --cry, while the other spins remain momentarily fixed, is 
assumed to be. (a) 

w~(e~) = 1~[1 -- �89 + ~+~)1 (6) 

with c~ > 0 and 0 ~< 7 ~< 1. The significance of the parameters ~ and 7 has been dis- 
cussed by Glauber. It is clear from the form of Eq. (6) that there is a correlation at all 
times between nearest-neighbor spins in that w~(a~) depends upon the values (r~+ 1 and 
a~_l of  the (i § 1)th and (i -- 1)th spins. 

The equilibrium properties of the Ising spin systems are described by the 
Hamiltonian 

H({ff}) = - - ' / } -~q i f f i+ l  (7) 
i 

Using detailed balance, the relation 

r = tanh(2J/kT) (8) 

where T is the fixed temperature of  the heat bath, can readily be derived. The equilib- 
rium form for the distribution function is 

p(o,({a}) = e-H,(o),/kT/~ e-m(.i,/~r (9) 

where the superscript zero denotes the equilibrium value. From Eqs. (4), (7), and (9), 
it then follows that the equilibrium correlation functions are 

@iza~ "'" ai .)  (~ ----- 0 if n is odd 

= (O-ilO-i~)(0) ~O-i30-i4)(0) ,,..~'e',._za',..'~c~ if n is even 
0 o )  
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where 

<0"1igi2} (0) ---= ~ i2-11 (11) 

and 

~7 = tanh(J /k  T)  (12) 

In Eq. (10) and in all subsequent equations, the spin indices are ordered such that  
i~ ~< i2 ~< "'" ~< i~. It follows from Eqs. (5), (10), and (11) that  the reduced equilib- 
rium distribution functions are 

p ( O ) [ g  , , p ( o ) [ g  , ,, , i , ,  gi~ ,..., gi,) = 2"-2P~~ gi~) P~~ gia) "'" ~ , in-1 gin)' /'/ ) 2 (13) 

i2--il p~0)(gq, gi~) = �88 + gi~gi~V ) (14) 

and 

Pl~ = �89 (15) 

Using Eq. (4) and the master equation for P({a}; t) derived by Glauber, the 
dynamic equations for the correlations functions for n >~ 1 can be written as 

d ay  
-dr <giiGi2 "'" gin} = --l~~ "" g/n} ~- T {<gil+lGia "'" gin} ~- <gil- lgi2 "'" gin> 

-~ <O'il(Yi=+l "'" gin } ~- <Gilgi=_ I "'" gin } 

@ "'" ~- <GilGi2 "'" gin+l > @ <(YilGi2 "'" gin_l> } (16) 

where all indices/1 "'" i~ are different. I f  any of the indices are the same, Eq. (16) does 
not  apply. For  instance, if h = i2, then (gqgi 2 ... g~} reduces to <gi2gq "'" gi,} 
since gi 2 = 1 for all i. In this case, we find from Eq. (4) 

d 
= --(f/ -- 2)O~<g/aO'i "'" gin } ~- eg~ {<g/a+lgi4 ,," gin > ~- <gia_lgi~ ... < % % .  gi n} gin> d-~ 

@- <Giagi4 "'" gin+i ) -~- <gia~Yi4 "'" gin__i} } (17) 

This leads to difficulties in the solution of Eq. (16) since, for example,/1 + 1 may be 
equal to iz, even though 1"1 =fi i2. 

For  n =- 1, 2, the differential difference equations for the spin correlation functions 
are, for i < j, 

d<gi> = --~<gi> + ~ [<g~+i> + <gi-l>] 

d c W 
~- <,,~gj> = -2~<g~g~> + T [<gi+~gJ> + <gi-~g;> + <gig;+i> + <gig;-~>] 

(18) 

(19) 
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The solution of these equations has been given by Glauber(3): 

<a~> =- e -~  ~ <a,~>o Ii_,.(Tat) 
n ~ = - - ~  

(20) 

<(Yi6j> = < O ' i O ' j >  (0)  2 7 e-2at >_a [ < O ' m ~  - -  <(Tm(Yn> (0)] 

x [I,_~(~at) Ij_,(Tat) --  I ,_,(Tat ) I~-__~@ca)] (21) 

where the subscript zero denotes the initial value at t = 0 of the correlation function, 
the superscript zero again denotes the equilibrium value at t = --0% and where the 
In(x) are the modified Bessel function In(x) = i-"Yn(ix). (6) 

For n = 0, the function e-~*I~(7~t) tends to zero monotonically as t increases. For  
n > 0, the function increases for times t ~ n/Tc~ as 

e-atln(yat) ~ (n!) -1 (lyca)~ e -st (22) 

For n >> 1, it reaches a maximum for t ~ (n/c00 -- y2)1/~. For  long times, the asymp- 
totic behavior for all values of  n is given by 

ll  q_ 4n 2 -  1 (4n 2 -  1)(4n 2 -  9) I e-~In(yo~t) ,~  (2rry~t)-Z/2 e-~(1-~) t 
87ca + 2!(87~t)  ~ + . . . .  (23) 

Various properties of the function e-~*In(7c~t) are discussed in detail by Montroll. (7) 
The asymptotic behavior of  the spin correlation functions (cri> and (a,  aj> are 

easily obtained from Eqs. (20)-(23) under the conditions that a finite set of initial 
correlation functions (cri> o and (aiaj> 0 has nonequilibrium values, i.e., (ai> 0 :~ 0 for 
some i and (aiaj> o ~ (aia~> (~ for some i,j. The case of (aiar o :~ (aiaj> (~ for all 
i, j is considered in Section 5, and in the appendix. The results are 

(a~> ~-~ k~(i)[(27rrca)-1/2 e-~(z-~ )*] ~ k~(i)[A(t)] (24) 

and 
(a~a3.> --  (a~r (~ ~'~ k2(i,j) t-~[A(t)] 2 (25) 

where [A(t)] is defined by Eq. (24) and where kz and k2 are independent of time and 
depend only on the initial conditions. We note that ((r~aj> approaches its equilibrium 
value somewhat faster than <cri> 2. The factor of t -~ in Eq. (25) arise due to the can- 
cellation of the first term in the Bessel-function expansion when Eq. (23) is substituted 
into Eq. (21). 

The explicit form fors kl(i) and k2(i , j ) fol low immediately from Eqs. (20), (21), and 
(23) and are 

k~(i) = ~ (a~> o (26) 
~'tt ~ - - c t  

k2(i,j  ) _ ( i - - j )  ~, 
~.PCE m<~ [(cr~a~> o -- (c%~>(~ -- m) (27) 
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It is clear that the asymptotic expansions used here and below are valid only if the 
ks(h,. . . ,  i~) are finite. If  the kn are zero because of special initial conditions, additional 
factors of t -a will occur in the asymptotic form. 

In the next sections, we develop methods which permit us to obtain exact and 
asymptotic results for the time dependence of the n-spin correlation functions. 

2. T H E  C - F U N C T I O N S  A N D  T H E I R  D Y N A M I C S  

As we have discussed in Section 1, the solution of Eq. (16) for the dynamics of  
the n-spin correlation function presents difficulties owing to the possible occurrence 
of spin correlation functions of order n -- 2 on the right-hand side of the equation 
when two or more spin indices are the same. In other words, Eq. (16) is then not a 
closed set of equations for the nth order correlation functions. In order to overcome 
this difficulty, we introduce a new set of functions, the Cn-functions, 

C , ( i l  , in ..... is; t)  =-- Cs(~r(n); t), 

defined for n > 2 with/1 ~< is ~< "'" ~< in, which are combinations of the correlation 
functions. These functions have the following properties: 

(a) The C~-function satisfies the same differential equation (16) as the n-spin 
correlation function, 

d C,(ia in ..... in " t )  - - n~Cn( i l  is .... , is t)  

~- - - f  {Cn(ix -k 1, i2 ..... in ; t)  q- C~(iz - -  1, is .... , in ; t)  

q- "'" -~- Cn(i~,  is ..... i ,  4- 1; t )  -t- C , ( i l ,  in ..... in - -  1; t)} 

(28) 
(b) The Cs-function is zero if two adjacent indices are the same, 

Cs(ia ..... i , ~ ; t ) = 0  for i~.=ij+~, 1 ~ < j ~ < n - - 1  (29) 

The differential equations (28) for the Cs-functions clearly form a closed set 
owing to the property (29). The equilibrium solution for the C~-function is 

C(~~ ..... in ; t )  = 0, n > 2 (30) 

which can readily be seen from Eq. (28). The general solution of Eq. (28) is 

C,( i l  ,..., i ,  ; t )  

= e - n ~  ~ C ~ ( m l , . . . , m n  ; O ) ~ ( - - 1 ) ~ I i z _ m z ' ( y ~ t ) ' " l i _ ~ ' @ a t )  (31) 
ml<~ri<'"<m n 

where the sum over ~ is over all permutations (ml' , m2', .... ms') of (mz, m2 ,..., m~). 
It will be noted that if two adjacent indices ij, i~.+1 are equal, the sum over the per- 
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mutation makes the right-hand side of Eq. (31) equal to zero, in agreement with 
condition (29). It is interesting to note that C~(iz,  i~ .... , i.~; t) will be zero for all 
times t if C,,~(mz, m2 ,..., m~; 0) is zero for all mj ,  j = 1, 2,..., n. 

Using the asymptotic properties of the Bessel function In(x)  as given in Eq. (23) 
and the solution (31) of the C~-function, we find for the asymptotic behavior of the 
C,-function 

Cn ~ Kn(a (n)) t(1-n)[A(t)]" (32) 

where the factor t (1-~) arises from cancellations in the sum over permutations and 
where K.  is independent of time and depends only on the initial conditions. The 
asymptotic form (32) is valid if a finite number of C . ( o ~ ;  0) are nonzero. It follows 
directly from Eq. (32) that C~(cr('~); t) approaches zero faster than (~i) '~, as can be 
seen from a comparison with Eq. (24). 

We shall now relate the C,-functions to the spin correlation functions. We 
define C~(a(~); t) by 

Cn(i l ,  i2 ..... i, ; t) ~ ~ ( - -  1) ~ (k -- 1) ! (-- 1) k-1 ~( i l i 2" ' "  i,~) ... (in--n~+~"" i , )  (33) 

where ~ is the permutation operator. The summation over ~: denotes a summation 
Over all even partitions of the n spins into subgroups in which the indices in the sub- 
groups are ordered. A partition of n spins into k subgroups containing nl spins in 
subgroup 1, n~ spins in subgroup 2,..., n~ spins in subgroup k is called even if nj ,  
wherej  = 1, 2,...k. is even except for at most one value ofj .  The notation (i~i2 "'" in), 
etc. In Eq. (33) is shorthand for the n-spin correlation function (crqcrq .-- cry,). Per- 
forming the indicated operations in Eq. (33) leads to the following relations between 
the C-functions and the spin correlation functions: 

G(ii ; t )  = ( % )  

C~(iz , i2 ; t) = (aizai  ~) 

C3(i~, i2, i3 ; t) = (cr,z~,2cr,a) -- (cr,~)(cr~ cr~ (34) 

- ( % ) ( % % )  + ( ~ . ) ( % % )  

c,(~1, h ,  ~ ,  i~ ; t) = ( % % % % )  - ( % % ) ( % % )  

- -  ((~il(Ti4)(qi ffia) "~ (ffil(Tia)((Ti~(Ti4) 

where, as always, iz ~ i2 ~ ia "'" ~ i , .  Note that the definition of Eq. (33) enables 
us to define Cz(il; t) and C~(i~, i2; t). The properties of these two functions have been 
discussed by Glauber (3) and in Section 1 of this paper. We shall show below why the 
C-functions defined here are more useful than the usual cumulants (see, e.g., 
Gnedenko (s)) in discussing the decay of the n-spin correlation functions for n > 2. 

We shall now demonstrate that the definition of the C~-function given in Eq. (33) 
satisfies the conditions of Eqs. (28) and (29) for n > 2. That C~(a(~); t) satisfies the 
differential equation (28) follows from the fact that each term in the sum of Eq. (33) 
satisfies Eq. (28). That C~(o(~); t) is zero for i~ = iz+~ can be proved by induction. We 
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invert Eq. (33) to obtain an expression for the n-spin correlation function in terms of 
the C-functions 

( ff i1(T i2 " " " (rin) 

= Z ( - - 1 ) ~ C n ~ (  i1 '  i2 . . . . .  in~ ; t )  Cne(inl+l  . . . . .  l'na+n 2 ; t ) " "  Cn~(in_n~+l . . . . .  i n ; l )  
e (35) 

In the sum on the r.h.s, of  Eq. (35) are the following contributions: 

(a) C~(h ..... i,~; t). 

(b) Terms in which is and iz+l are in different subgroups. These terms cancel in 
pairs due to the fact that the interchange of it and it+l is an odd permutation 

(c) Terms in which is and i,+z are in the same subgroups j and n > nj > 2. 
These terms are zero, using the induction hypothesis that Cn~ = 0, 
n > nj > 2, if two adjacent spin indices are the same. 

(d) Terms in which is and it+~ are in the same two-spin subgroup. Since 

C~(i~, iz+~ ; t )  = (or, orb+i) = 1 (36) 

these terms add up to ( a q  .. .  ai,_lai~+, . . .  a i , ) .  By inspection, C3(i l ,  iz , i3; t)  
is zero if/1 = is or is = ia. This finishes the proof  of  property (29) that 
C,(Q ..... i~; t ) =  0 for is = i~+1 and n > 2. Thus, the C~-function as 
defined by Eq. (33), for n > 2, satisfy Eq. (29). 

A cumulantlike property of  the C-function is that 

c~( i~  ... .  , i . ;  t )  = o (37) 

if two adjacent spins, is and i , ,  are uncorrelated to the rest of the spin variables 
i i , /2  .... , i~-z, iz+s .... , i~. 

It should be emphasized here that the definition of the C-functions in Eq. (33) in 
terms of the spin correlation functions is a convenient one but not a unique one. Other 
fimctions could be developed which possess the desirable properties (28) and (29). 

In the next section, we shall use the asymptotic properties of the C~-function to 
discuss the time-dependent behavior of the spin correlation functions. 

In a subsequent paper, we will demonstrate that there is a close and interesting 
relation between the C-functions and Pfaffians. That such a relation exists can readily 
be seen from the expression for C4 in Eq. (34), in that 

I ( i l i e )  ( i l i z )  
((rilcri2cri3(~i,) - -  Ca(J1, i2,  iz , i a ; t )  = ( i2iz)  

where the expression on the right-hand side is the Pfaffian. 

( i l i a )  
( i j , )  (38) 
( i 3 i , )  

3. R E L A X A T I O N  OF T H E  SPIN C O R R E L A T I O N  F U N C T I O N S  

The dynamical behavior of the correlation functions is easily obtained from 
Eq. (35), which expresses the spin correlation functions in terms of the C-functions, 
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and from Eq. (31), which gives the explicit dynamical behavior of the C-function. 
Explicit expressions for the time dependence of the one-and two-spin correlation 
functions have already been given in Eqs. (20) and (21). For example, the time depend- 
ence of the three-spin correlation function can be obtained from Eq. (35) in the 
form 

(c~iicri2~ris) = Cz(i~ , i2 , iz ; t)  ~- C~(il ; t)  C~(i2 , in ; t)  

§ C~(i3 ; t)  C2(i~, i2 ; t)  - -  C~(i2 ; t) C2(ia, iz ; t) (39) 

Use of Eqs. (31), (20), and (21) then leads to an explicit but complicated expression in 
terms of Bessel functions. 

The asympto t i c  time dependence of the spin correlation functions can readily be 
obtained from Eqs. (35), (32), (24), and (25). We shall discuss the asymptotic time 
dependence for the three- and four-spin correlation functions in detail and then give 
some general properties for the n-spin correlation function. From Eq. (39) it follows 
immediately that 

(O'i10"i20"i3 } ~ at-2[A(t)]  a + bt-Z[A(t)]  3 + c[A(t)]  (40) 

where 
a = /s i 2 ,  i3), 

b = k~(il)  k~(i2, i3) q- kx(ia) k2(i~, i~) - -  kz(i2) k2( i l ,  is) 

C = kl(il)~(yi2(Ti~ (0) -~ kl(i~)((rfi(ri2~(~ - -  kl(i2)((yilcris~ (0) 

and where k l ( i )  and k2( i , j )  are given by Eqs. (26) and (27). In Eq. (40), we have 
used the leading asymptotic term for each term on the right-hand side of Eq. (39). It 
is clear from the form of Eq. (40) that the relaxation of the three-spin correlation 
function proceeds in two stages(3): in the first stage, (~rqai (ri3~ becomes a functional 
of the two- and one-particle correlation functions 

((Yil(Yi2ffi3) -+ 'F3[(o ' i jcr162176 , (crii)] (41) 

as a [A(t)]; in the second stage, the functional Fa of Eq. (41) decays to its equilibrium 
value 

/73[(O'ijo'ik) (0), (O'ij~] -+  Fz[f(yij(~ik~ (0), (o'ij~(~ ] = 0 (42) 

as [A(t)]. Overall, (crlzcriJiz ~ decays to its zero equilibrium value as [A(t)]. 
In a completely analogous manner, we can write the four-spin correlation func- 

tion in terms of the C-functions as 

~Cr~lai Cr~3ai,) = C4(i 1 , i~ , i8 ,  in ; t) + C2(iz , i2 ; t)  C2(i3, i4 ; t) 

+ C~(i~, in ; t) C~(i2, i~ ; t )  - -  C~(i l ,  i~ ; t)  C~(i~, in ; t) (43) 

3 We shall frequently neglect the slowly varying time factors of the form t-" in front of the [A(t)] 
[(2~r~,c~t)-z/2 e-~tl-~ ')~] when discussing the asymptotic behavior of various functions. 
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The asymptotic form of ( f f i l (~ i f f i (Y i i )  is then found to be 

((Yil(Yi~(Yia(~i~) = dt-Z[A(t)] ~ ~- et-9[A(t)] ~ + f t-Z[A(t)]  ~ -k (crqcri~)~~ ((ricri~)(o) 

where d =/s h , /2 ,  ia, ia), 

e = k~(h ,  i2) k~(iz, ia) § k~(h ,  ia) kz( iz ,  ia) --  k~(h ,  ia) kz(i~, ia) 

and 
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(44) 

f = k~(iz, i2)(cri3(rq) ~~ + k2(ia, ia)((rilai2) (~ -b k2(i t ,  ia)((ri2eq) (~ 

+ k~(i2, ia)@i~cri~) (~ --  k2(i l ,  ia)(cri~q) (~ --  k2(i2, ia)@i~(ri~) (~ 

Again we have used only the leading asymptotic terms of each term on the r.h.s. 
of Eq. (43). The relaxation of the four-spin correlation function also proceeds in two 
stages: in the first stage, ((ril(rqai3a q) becomes a function of the two-particle correla- 
tion functions, 

<(r~la~,cr,3(r~,) -+ F4[<ai~a~k)] (45) 

as [A(t)]4; in the second stage, the functional F4 of Eq. (45) decays to its equilibrium 
value 

F~[<ei (ri,~)] _+ F4[@ije@(0)] ___ @i e@(o) <cri (ri,)(o) (46) 

as [A(t)] 2 with ((%cr~) (~ given by Eq. (11). The overall relaxation of (eq~2(r~ crq) to 
its equilibrium value ((rqai~) (~ ((ri (rq) (~ goes as [A(t)] "2. 

The asymptotic behavior of ((ri~ "'" cri,) depends upon whether n is even or odd. 
For odd n, n > 3, we find that in the first stage of the relaxation 

((r~ (r, "- ~,~) -+ F~[@(~-2))] (47) 

as [A(t)] ". The overall relaxation to the zero equilibrium value goes as [A(t)]. If  n is 
even, n > 2, we find that in the first stage of the relaxation 

( Cril ffi2 "'" (Tin) --~ F n [ f  (y(n-2)) ] (48) 

as [A(t)] ~. The overall relaxation to the equilibrium value 

n/2 
((~il(ri2 "'" O'in)(~ = H (o'i.oi-l~ 

j=l 

goes as [A(t)] z. 
We shall now discuss the time dependence of the cumulants. (8) The first-order 

cumulant, defined by 

(~i)~ ~ ( ~ )  (49) 

has the asymptotic time behavior 

( ,~)o ~ k~(O[A(t)] (50) 
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The second-order cumulant, defined by 

<0"i10"i2> c ~ <0"i10"12 > - -  <0"i1><0"i2 > (51) 

has the asymptotic time behavior 

((ri~ai~)c ~ ((rizcri~) (~ @ {k2(i,, i2) t -~ - -  k , ( i , )  k z ( i2 ) } [A( t ) ]  2 (52) 

The third-order cumulant is given by 

< % % % ) ~  - ( % % % >  - < % % > ( % )  - ( % % ) ( % )  

- -  (o'qO'ia)(O-i=) -~- 2<o'fi><O'i2)(o'ia > 

= Ca( i z ,  i z ,  ia ; t )  - -  2((r~2)(cri,cria ) q-  2<(r,z)<a~=)(~a > (53) 

Using some of our previous results, we find for the asymptotic time behavior of 
< % % % > ,  

< % % % ) o  --, - 2 < % % )  (~ k l ( i=)[A( t ) ]  (54) 

For the asymptotic behavior of the nth-order cumulant, we find 

< % % . _  %>0 ,~ ( % %  ... %>~o) + k[a(t)] (55) 

We note that the asymptotic time dependence of the cumulants is quite different 
from that of the C-functions. In fact, the cumulants relax to their equilibrium values 
even slower than the correlation functions for all n, n > 1. Because of this property, 
their application to the Ising spin model can give rise to incorrect deductions about 
the relaxation of the n-spin correlation functions. 

4. R E L A X A T I O N  O F  T H E  Q - F U N C T I O N S  A N D  T H E  P R O B A B I L I T Y  
D I S T R I B U T I O N S  

We now wish to study the time-dependent behavior of the n-spin distribution 
function P,~(o,~'~; O. ]~n order to do so, it is useful to define a function Q,~(c~'~); t) which, 
for the Ising spin model considered here, is a convenient function for studying the 
relaxation of  p,~(cr(n); t). It is used here in the same fashion that the Ursell function 
U~(x('~; t) was used in papers I and II. 

We define Q~(e(~); t), for n >~ 1, by 

Q,~(i~ , i2 ,. . . ,  in ; t )  ~ 2-n(rilcri ""  (r, ,C,~(h , i2 .. . . .  in ; t )  (56) 

where iz ~< i2 ~< "'" ~< i,~. The properties of this function are: 

(a) 

(b) 

Q~(~r(~; t) satisfies the same differential equation, Eq. (16), as the n-spin 
correlation function. 

Qn(crc~); t )  is zero for n > 2 when two adjacent spin indices are equal. This 
follows from Eq. (29). 
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( c )  Q~~ i s )  = l ( y i z ( Y i ~ i l - - i 2  

Q(0)(~(~)) = 0 for all n, n ~ 2 (57) 

This follows from Eqs. (10), (11), and (30). 

(d) For n ~ 2, Q~(cr(-); t) = 0 if two adjacent spins iz and i~+1 are uncorrelated 
with the rest of the spin variables i l ,  is ,..., i~_z, i~+s ..... i~. This property, 
which follows from Eq. (37), is analogous to an important property 
of the Ursell function discussed in I and IL 

(e) ~ Q,(cr(-); t) = 0, 1 ~< j ~< n (58) 
o'ij 

This follows immediately from the definition in Eq. (56) and the fact that 
the spin variables e~j have the two values ~ 1. This is another important 
property which is also possessed by the Ursell functions. 

The asymptotic properties of Q,(a("); t) can readily be obtained from definition 
(56) and Eqs. (24), (25), and (32). They are 

Qz(i) ~ �89 

Qz(ix is) " ~  lo" (7 [g'o" o- \ (0 )  . ~  ks( i  1 i2) t - l [A( t ) ]  s] 4 i 1 i2L\ i I i 2 /  ' 

Qn(cr(n)) ~.~ 2-nailcri2 .. .  (ri K , ( ~  (")) t(1-")[A(t)] n, n > 2  

(59) 

(6o) 

(61) 

The n-spin probability distribution P.(~("); t) can be expressed in term of the: 
Q-function as 

p,(a(-); t) = ~ 2"'-" ~ (--1) ~ ~ Q , ~ ( i ~ ,  is ..... t'~ ; t)  ... Q,~(i~'_,~+z ..... i,~. ; t) (62) 
n ' = 0  f 

where the notation is the same as in Eq. (33). The convention Q0 = 1 is used. Equation 
(62) can be obtained from the definition (56) for the Q-function, the definition (33) for 
the C-function, and Eq. (5), which relates the P.(~(~); t) to the spin correlation func- 
tions. The first few expressions for p.(~(.); t) are 

Pa(a i ;  t) = QI(i; t) + �89 

Ps((ril , (ri~ ; t) = Qs(il  , is ; t) + �89 ; t) + �89 ; t )  + l 

P3((r,1, ai~, a/3 ; t) = Q3(il , i s ,  is ; t) q- Qz(i~ ; t)  Qs(is , is ; t )  (63) 

-q- Qa(iz ; t )  Qs(i~ , is ; t) - Ql(is ; t) Q2(il , is ; t) 

1 i ; + ~[Q2( 1, is t)  q- Qs ( i l ,  is ; t) q- Qs( is ,  is ; t)] 

+ ~[Qz(il ; t )  + Ql(is ; t) + Ql(ia ;t)] + 

We have not succeeded in finding the analytical inversion of Eq. (62) to obtain a 
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general expression for Q~ in terms of the P~. We will, however, display here the first 
few explicit forms of Q~ in terms of the P,~: 

1 Ql(i;  t )  = Pl(cri ; t )  

Q2(iz , i2 ; t)  = P2(cril , ~i2 ; t)  - �89 ; t )  + Pz(~i2 ; t)] 4- ~- 

Qa(i~ , i 2 , i a ; t)  = Pa(~rq , ~,~,  ~ ,  ; t)  - P z ( a q  ; t )  P z ( ~ ,  a q  ; t)  (64) 

- -  Pz(cr~. ; t )  P 2 ( ~  1 , cr~ ; t)  + Pz(~r~ ; t)  P~(g~ l ,  ~ ; t )  

- P~(~,~,  % ; t) + p ~ ( %  ; t) P d ~ i .  ; t) 

We now discuss the asymptotic relaxation of the n-spin distribution functions 
P~(cr(-); t). This discussion can be based either on the relaxation of the n-spin cor- 
relation functions or the relaxation of the Qn functions. It follows from Eqs. (59)-(63) 
that 

Pa(ai  ; t)  ~ P~<~ + �89  (65) 

P2(gi~,  ~i,  ", t )  ~ P~~ , ~i2) + k~i~ri.2k2(ix , i2) t - l [ A ( t ) ]  2 

+ ~(cr,lkz(ix) + ~,~k~(i2)}[A(t)] (66) 

P3(cri~ , ~ , ~i ,  ," t)  ~ P(~ t q ,  ~r~ , cri,) + ~ i ~ i ~ i , K a ( t ' ~  , i~ , i~) t -~[A( t )]  a 

+ ~%%%{k~(~, i~) k~(i0 + ~ ( ~ ,  i~) k~(~.) 

- -  k~(i~ , iz) k~(i~)} t - z [A( t ) ]  ~ 

4- ~riaicri~{(cricri~)(o) kx(i~ ) 4- (crqcri~)lo' kl(iz) 

_ ( ~ , ~ , ~ ) ( o ) k z ( i z ) ) [ A ( t ) ]  

+ ~ {aqa~k~(il, i~) + ~ r ~ k ~ ( i l ,  i~) 4- ~ , k ~ ( i ~ ,  i~)} t -a[A( t ) ]  ~ 

+ ~{a~k~(i~) 4- a~k~(i~) 4- c%kz(i~)}[A(t)]  (67) 

where we have used the leading asymptotic term of each term on the r.h.s, of Eq. (63). 
The relaxation of P~(a~; t) to its equilibrium value P~~ 0 proceeds in one stage, 

P~(~ ; t) --+ P~~ (68) 

as [A(t)]. The relaxation of P~(~q, ~q; t) proceeds in two stages ~ in the first stage: 

P ~ ( ~ ,  ~ ; t)--+ Gz[P~ ~ Pz] (69) 

as [A(t)] ~, where Gz is a functional of the equilibrium two-spin distribution function 
and the time-dependent one-spin distribution function; in the second stage, 

G t~(o) p~] _+ Gz[p~O), p~O)] = p~O)(e q cri~ ) (70) 
2 t ~ 2  ~ 

See footnote 3. 
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as [A(t)]. The overall relaxation to the equilibrium distribution function thus proceeds 
as [A(t)]. The relaxation of Pa(crq, ~r~, aq; t) proceeds in three stages. In the first 
stage, 

P ~ ( %  , % , % ; t ) ~  G~[P~ , .e d (71) 

as [A(t)p. In the second stage, 

Gz[Pz , P1] --~ G3[P~ ~ P~] (72) 

as [A(t)] z. In the third stage, 

Pd = %) %) (73) 

as [A(t)]. The overall relaxation to the factorized equilibrium distribution function, 
Eq. (13), again proceeds as [A(t)]. The asymptotic properties of P,(cr t), n > 3, are 
most easily obtained from the relation between the P~ and the spin correlation func- 
tions, Eq. (5). It follows from Eqs. (47) and (48) that in the first stage 

P~(~"~); t) -+ G~[P~-I], n > 3 (74) 

as [A(t)]". In the last stage, 

G-tP~ ~ Pz] --+ G.[P~ ~ P1 (~ = P~(~176 (75) 

as [A(t)], where P~~ is given by Eq. (13). It is evident from the above analysis 
that the n-spin distribution function decays very rapidly to a functional of lower- 
order distribution functions, with the slowest stage of the relaxation being the relaxa- 
tion of the one-spin distribution function Pl(aq; t) to its equilibrium value P~~ 3. 

It can readily be verified from the definition of the Ursell function given in 
papers I and II that the Ursell function U,(~rc'~); t) for n > 2 does not decay to its 
equilibrium value any faster than the n-spin distribution functions. Thus, for instance, 

U3(crq, ~f~, ai3 ; t) -+ U~~ cri2 , Cri. ) = 0 (76) 

as [A(t)]. It is this undesirable property of the Ursell function that led us to develop 
the Q-functions in this section. 

5. E X A M P L E S  

5.1. Relaxation of Spin Functions from Lattice Temperature  T o to T 

It is of interest to study the relaxation of the spin functions when the lattice is 
subjected to a sudden change in temperature from To to T. The spin system is assumed 
to be in equilibrium with the heat bath at temperature To at time t <~ 0. At time t = 0, 
the temperature of the heat bath is suddenly changed to T. 
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For  t ~< 0, the C-functions are equal to their equil ibrium values at  t empera ture  

To, 
C~(iz, is ..... i~ ; O) = 0 for  n @ 2 

= n~ ~-~ for  n = 2 (77) 

where n0 = tanh(J/kTo). The t ime dependence of  the C~-functions is given by Eq. (31). 
I t  follows immediately  that  

C,( i l ,  is ..... i,; t) = 0 for  n v~ 2 (78) 

for  all t imes t. Fo r  n = 2, it follows f rom Eq. (21) that  

C2(il , is ; t )  ~- <crqai2 > = n i2-q 4- e -s~'t ~ (no 2.ml -- n ~ - ~ )  

-r  

• {I~_m~(7"at) I~_m(7at) -- lq_m~(7"~t) I,~-~l(7'~t)} (79) 

where n = tanh(J/kT) and 7' = tanh(2J/kT).  Setting i~ = i, is = j 4- iz, ml = m, 
and ms ---- m 4- n yields 

Cs(i, i 4- j; t) = n ~ 4- e -2~ i (no ~ -- n"){IJ-,(27 at) -- I~+, (2~t)}  
'a,=0 

(8o) 

were we have used the relation 

Ik(2x) = i IT~+m(x) I~(x) (81) 
q/z=--oo 

Since the sum in Eq. (80) involves an infinite number  o f  nonzero terms, we mus t  
pe r fo rm the asymptot ic  analysis in a somewhat  different manner  f rom tha t  employed 
in the preceding sections. Substi tution of  the identity (6) 

f 
~ 

I~(z) ----- (1/27r) eZe~176 -~k~ dO (82) 

into Eq. (80) yields 

Cs(i, i 4- j ;  t) = n ~" + (2/~r) e -2~ eS~r *e~176 sin jO sin 0 
0 

• [(no + 1/% - -  2 c o s  O) - 1  - -  (T] @- 1/n - -  2 COS O) -1 dO] (83) 

Fo r  t >~ j/2a7", the main  contr ibut ions o f  the integral will be in the ne igborhood  o f  
0 ---- 0. The asymptot ic  fo rm of  Eq. (83) then becomes 

Cs(i, i + j; t) ~ <trial+j) 

�9 ( zr / ~z/2 ] (84) 
n' + J,-g<j [(1 t-1/2[A(t)] 2 

-no)  s ( 1 -  n)~ 
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An inspection of Eq. (84) shows that the two-spin correlation function relaxes to its 
.equilibrium values (cricr~+~-) t~ = ,fl by a factor t -~/s slower than shown in the result 
obtained in Eq. (25). This difference is due to the fact that in the example studied here, 
Cs(ix,  is; 0) differs from the equilibrium value C~~ is) for all values of ix and i2. 

From the above analysis and Eq. (35) we find that: 

for n odd: (a ly i~  "" (~i.) = 0 

f o r / 1 / e v e n :  ( % %  "" ~ . )  = F, ( - 1 )  ~ . ~ c s ( i x ,  i2 ; t )  ... c~( i ._~,  i .  ; t)  
(85) 

The sum in Eq. (85) is over all permutations with the restriction that no two 
terms in the sum are the same and that the indices in each Cz are ordered. Thus, the 
odd-order spin correlation functions retain their zero equilibrium form at all times, 
while the even-order spin correlation functions relax to their equilibrium value 

~(~il(~i2 "'" Gin~(O) = ~0"i10"i~(0) ~Cri30"i4) (0) ,*, f (T in  1Crin~ (0) 

as t-x/~[A(t)] 2. The explicit coefficients for this relaxation can be obtained by 
substituting the result of Eq. (84) into Eq. (85). 

The initial time behavior of (72 is 

C2(i, i + j;  t) ~ (a47/+j) = ~/o j + 2e~t[G(~/, ~)] + O(t 2) 

with 

(86) 

: 11-( i--1 i - - 1 )  ( ~ + 1 -  71J+1)] G(~/, ~) .~t~0 -- + -- (~7 ~ -- ~/0 j) (87) 

which can readily be found by developing the exponentials in Eq. (83) in a Taylor 
series around t : 0. The correlation between two spins thus grows (or decays) linearly 
with time for t ~ j /2o~y .  

It is interesting to note from the analysis given below that the Ising spin system 
considered here is not canonically invariant. A system is called "canonically invariant" 
if it relaxes from an initial canonical distribution to its final canonical distribution via 
a continuous (in time) sequence of canonical distributions, tg) It is only for canonically 
invariant systems that a temperature can be defined exactly for the relaxing system. 
The results found here for the Glauber Ising spin system and by Anderson et al. (9~ for 
noncorrelated spins in contact with a heat bath indicate that the widely used practiec 
of  characterizing relaxing spin systems by a "spin temperature" needs to be reexamined 
in more detail. 

If  the spin system is to be canonically invariant, it is clear from the initial and 
final equilibrium forms of C2, i.e., C2(i, i + j;  0) = ~0 j and C~~ i + j )  : ~qJ, that 
C~ must be of the form 

C2(i, i + j ;  t) =-- (aiai+j> = ~f(t) (88) 

with 

~7(t) = tanh[J /kT( t ) ]  (89) 
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where T(t )  is the time-dependent spin temperature. Let us now check whether the 
form (88) is a solution of the differential equation (19) for the two-spin correlation 
function. This yields 

d 
j ~ -  ~/(t) = --2c~/(t) + oW[1 + ~72(t)] (90) 

Since this differential equation has no solution that is independent of j, except for the 
equilibrium solution at t = o% and since, according to Eq. (89), ~(t) must be independ- 
ent of j,  we have shown that the Ising spin system is not canonically invariant and 
thus cannot be described in terms of a "spin temperature." 

5.2. R e l a x a t i o n  of an In i t i a l  Spin F l u c t u a t i o n  f r o m  E q u i l i b r i u m  

It is of interest to see how a local fluctuation from equilibrium relaxes to the final 
equilibrium state. We consider an initial state where all the C.~ have their equilibrium 
values except for Cz(0; 0) which we set equal to A, i.e., 

C~(i 1 ,..., in ;0) = Cn (~ 

Cz(i; O) = ~ , ) o  = C~~ =- 0 

Q ( 0 ;  0) = (~0)o = A 

for n > l  

for i : / - 0  (91) 

The time dependence of the C-functions is given by Eqs. (20), (21), and (31). It follows 
that 

C,(h ..... iv ; t) = C, (~ for n > 1 

C~(i; t) ~ @,) = Ae-~I~(y~ t )  for all i 
(92) 

Hence, for t ~ I i I/oG, the initial behavior as given by Eq. (22) is 

(93) 

where we note that/,n = L ~ .  For [ i l >~ 1, @i) reaches a maximum for 

t ~ (I i 1/~)(1 - -  ~2)1/2, 

For long times, the asymptotic behavior is given by Eq. (23), 

( ~ i )  ~'~ A(21r)'~xt) 1/2 e -~(1-1)t = Z] [A(t)]  (94) 

This is in agreement with the general result obtained in Eq. (24), with kz(i) = A.  I t  
will be noted that (ei)  for large t is independent of the distance i of the spin from the 
local disturbance at lattice site zero if only the constant term is retained in the expan- 
sion of the Bessel function. 

8zz/z/z-z 
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The nth-order correlation function can be calculated using Eq. (35). This yields 

(crq ... cri~ ) = 0 for n even 
(95) 

= ~ (--1) ~ ~(cri~ri~) (~ (cri~crl,) ~  (~i~ ~ri,_ )(0) (~i .)  for n odd 

where the sum is over all permutations, with the restriction that no two terms in the 
sum are the same and that the indices in each (cr~j) are ordered. Hence, the nth-order 
correlation function (for n is odd) decays to the zero equilibrium value as [A(t)], 
which is in agreement with the general result stated below Eq. (47). 

A P P E N D I X .  Bounds on the Relaxation of C. 

We present here a simple argument for obtaining the upper and lower bounds for 
the time dependence of the Cs-functions. We define us(t) to be equal to the maximum 
value of Cs -- C~ ~ at time t. Since Cn -- C~ ~ is identically equal to zero when two spin 
indices are equal, u~ >~ 0. The time dependence of us(t) can be obtained from Eq. (28). 
The time derivative fulfills 

du~(t)/dt <~ --na(1 -- 7) us(t) (A.1) 

Equation (A. 1) is easily solved to yield 

u.(t) <~ us(O)e -n~ca-~)~ (A.2) 

The function us(0) e -"~cl-r)~ provides an upper limit to the value of C. at time t. 
We define v(t) to be equal to the minimum value of Cs -- C~ ~ at time t. The time 

dependence of v.(t) can be obtained from Eq. (28). The time derivative fulfills 

dv~(t)/dt >/ --nc~(l -- y) vs(t) (A.3) 

with the solution 

v,(t) ~ v,~(O) e -"~r (A.4) 

The function v,(0) e -s~c-~)~ provides a lower limit to the value of C,, at time t. 
It is clear that Cs at all times t must lie between the values of the functions on the 

r.h.s, of  Eqs. (A.2) and (A.4). Thus, asymptotically, the function Cs must go to zero 
at least as fast as e-"~(~-r )~. This argument, of course, only provides bounds for the 
asymptotic time dependence of C, and cannot be expected to reproduce the pre- 
exponential time factors obtained in the bodu of the paper. 
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